
The Space-Time CE/SE Method for Solving

Maxwell’s Equations in Time-Domain

X.Y. Wang1, C.L. Chen2, Y. Liu3

1 Taitech Inc., NASA Glenn Research Center, Cleveland, OH 44135-3191
email: wangxy@turbot.grc.nasa.gov

2 Rockwell Scientific, Thousand Oaks, CA 91358
email: cchen@rwsc.com

3 NASA Ames Research Center, Moffet Field, CA 94035
email: liu@nas.nasa.gov

Abstract
An innovative finite-volume-type numerical method named as the space-time conserva-
tion element and solution element (CE/SE) method is applied to solve time-dependent
Maxwell’s equations in this paper. Test problems of electromagnetics scattering and an-
tenna radiation are solved for validations. Numerical results are presented and compared
with the analytical solutions, showing very good agreements.

1. Introduction
The most popularly used numerical method for solving the time-dependent Maxwell’s equa-
tions are the finite-difference time domain (FDTD) method originally introduced by Yee
[1], and the finite-volume time-domain (FVTD) method developed by Shankar et al. [2]
and Shang [3]. The space-time CE/SE method was developed by Chang [4] and has been
successfully applied in computational fluid dynamics (CFD) and computational aeroacous-
tics (CAA) [5]. It is initiated here to apply this method for solving Maxwell’s equations. Its
salient properties are summarized briefly as follows. First, both local and global flux con-
servations are enforced in space and time instead of in space only. Second, all the dependent
variables and their spatial derivatives are considered as individual unknowns to be solved
for simultaneously at each grid point. Third, every CE/SE scheme is based upon a non-
dissipative scheme with addition of fully controllable numerical dissipation. This results in
very low numerical dissipation. Fourth, it can use both structured and unstructured meshes
in one single algorithm to handle complex geometries, and it has the most compact stencil,
this leads to efficient parallel computing and easy implementation of boundary conditions.

The same procedures used to construct numerical schemes for the Euler equations in [6]
are applied to Maxwell’s equation here. Test problems of electromagnetics scattering and
antenna radiation are solved for validations. Numerical results are presented and compared
with the analytical solutions in the following.

2. Numerical Results
The first example is about the scattering field of transverse magnetic(TM) waves due to a
perfect conducting circular cylinder, which is depicted in Fig. 1. The radius of the cylinder
is denoted as a, and the incoming wave has electric intensity Ez and magnetic intensity
Hx � Hy components that are described as

Ez
� exp

�
i
�
ωt � kx ��� � Hx

� 0 � Hy
� � exp

�
i
�
ωt � kx ��� (1)
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where k is the wave number and ω is the frequency. Three different wavenumbers
(ka � 1 � 0 � 5 � 0, 10.0) are considered here. The obtained solutions of the scattering field
are plotted in Figs. 2–4 with the analytical solutions. The distribution of Ez, Hx, and Hy on
the cylinder surface at one time instance plotted in Fig. 2 shows good agreement for the
three wavenumbers. The normalized surface current plotted in Fig. 3 agrees well with the
analytical solution for ka � 1 � 0 and 5.0, while some discrepancies at the trailing edge of
the circular cylinder are observed, which is expected to be improved by using a finer mesh
on the cylinder surface. The radar cross section (RCS) in dB is plotted in Fig. 4, showing
good agreements. The definitions of the normalized surface current and radar cross section
(RCS) in dB are referred to in [2]. The mesh used here is 91x61, 121x121, and 241x161
for ka � 1 � 0 � 5 � 0 and 10.0, respectively.

The second example regards the radiation of a 300MHz half-wavelength dipole antenna.
The computational domain is a cubic box formed by � 0 � 5 � x � y � z � 0 � 5, in which the half-
wavelength antenna is located at x � y � 0 � � 0 � 25 � z � 0 � 25. The thickness of the antenna
is not considered here. And the current density �J � �

Jx � Jy � Jz � along the antenna surface is
defined as:

Jx
� 0 � Jy

� 0 � Jz
� � cos

�
ωt � sin

�
k
�
0 � 25 �
	 z 	������ sin

�
k � 4 � (2)

A uniform 21x21x21 mesh is used in the simulation. The directivity pattern of the half-
wavelength dipole is computed through the near-to-far-field transformation. The computed
result of the directivity pattern in 2D is plotted in Fig. 5 with the analytical solution, show-
ing a good agreement. The computed 3D directivity pattern is shown in Fig. 6.

3. Conclusion
The space-time CE/SE method for solving Maxwell’s equation in time-domain has been
presented. Numerical validations show that some preliminary success has been achieved.
More tests need to be done to show the potential of the CE/SE method for solving more
complicated problems, such as those involving anisotropic media, dispersive media, and
bodies with complex geometries.
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Figure 1: Scattering by a circular cylinder.
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Figure 2: Solution of Ez � Hx � Hy on the cylinder surface at one time level.
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(c) ka � 10 � 0
Figure 3: Normalized surface current for the
circular cylinder.
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Figure 5: The 2D directivity pattern of a
half-wavelength dipole.
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angle

R
C

S
in

dB

0 60 120 180
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10
11
12
13

CE/SE sol
analytical sol

(c) ka � 10 � 0
Figure 4: RCS for the circular cylinder.
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Figure 6: The 3D directivity pattern of a
half-wavelength dipole.
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